Prediction of Extreme Climate Conditions in Namal Valley using Machine Learning

Malik Jahan Khan, PhD

Department of Computer Science Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences

Background

- Namal lake is vulnerable to flood in the monsoon seasons, in other parts of the year it faces water scarcity.
- These challenges resulted in fatalities, damage to the infrastructure and low agricultural yield over years.
- The two very recently flooding events occurred in 2015 and 2020 respectively. In 2022, the dam was facing severe drought.

DAWN 16, 2023

MIANWALI: The Namal Lake flooding has inundated several localities since Aug 6 after the lake started overflowing from all sides as its gates are jammed.

I: Nothing is being done to ease the plight of residents of the Namal have been affected by hill torrents .

Early Warning System

- Water Level Prediction
- Drought Prediction
- Calculating Risks
- Alert Communication
- In-time Safety Actions

- Risk Knowledge
- Monitoring/ In-situ Sensors
- Meteorological Dataset
- Deep Learning Techniques
- Hydrological Models

13 CLIMATE ACTION

Methodology

Data Sources

- Data from sensors installed by Centre For Water Informatics And Technology, LUMS.
- 5 years of historical data from irrigation office.
- Catchment attributes and meteorological for large sample studies (CAMEL) data set.
- 37+ years of rainfall dataset from Center Of Hydrometeorological And Remote Sensing data portal.

The Opportunity

- Smart phone penetration in the community
- Impact of "Machine Learning" in our daily life applications

Proposed Solution

- Leverage neural networks / deep learning
- Train the machine learning models on the data collected from different sources
- Forecast the extreme climate conditions in the valley
 - Flash flood forecast
 - Drought forecast

Implementation

- Python
- TensorFlow / CNN / RNN / LSTM
- Amazon SageMaker Studio
- Firebase Database
- Android Studio

Rate of Change of Error with respect to w_{ij}

$$\Delta w_{ij} = -\eta rac{\partial E}{\partial w_{ij}}$$

Apply update rule!

$$w'_{ij} = w_{ij} + \Delta w_{ij}$$

Back-propagation Algorithm: Artificial Neural Networks

Recurrent Neural Networks (RNNs)

- Conventional neural network takes a bunch of input features and gets itself trained to estimate the output based on the training data
- Bottleneck: It takes the input features all at once and doesn't discriminate the features based on the temporal history
- RNNs are used to resolve this bottleneck!
 - Long Short-Term Memory (LSTM) is one of the popular RNNs

LSTM Network Encoder Output

Water Level Prediction Model

Training Process		
Number Of LSTM Layers	2	
Hidden States In layers	10	
Activation	Tanh (tangent hyperbolic)	
Batch Size	10	
Input	144 hours data	
Number Of Features	4	
Number Of Epochs	20	
Optimizer	Adam	
Loss Function	Mean Square Error	
Output	Next 5 Hours data points	

5-Hours (short term flood forecasting)

Features Lake Water Level Rain Temperature Humidity

Deep Learning Model

24

Results Comparison

Lake Water Level Prediction Model	RMSE on different input size		
	144h (6 days)	72h (3 days)	24h (1 day)
Hourly max	0.109	0.114	0.119
Hourly average	0.185	0.191	0.182

Risk Assessment

AREA UNI	DER LAKE	Flood Ris	k Classes
Lake Water Level (ft)	Area In Acres	Lake Water Level (ft)	Risk
1160	1338.39	Less than 1162	Normal
1165	1942.6	1162.1 – 1165	Low
1170	2830.60	1165.1 – 1168	Medium
1170	2030.00	1168.1 – 1170	High
1175 3721.33	Above 1170	Extreme	

Irrigation Department

Ongoing Work

- The forecasts from this information can be used to develop the Reservoir Optimization Model.
- The system is to be deployed in real time by interfacing with the sensors database.
- More sophisticated deep learning approaches are to be implemented to make the forecast:
 - More reliable
 - Robust
 - Generalizable

Standardize Precipitation Index (SPI)

- Standardize Precipitation Index is a standard index used to characterize the drought over different timescales.
- SPI over longer time scales are used to model the reservoir storage and ground water.

SPI Prediction Model

Training Process		
Number Of LSTM Layers	2	
Hidden States In layers	12	
Activation	ELU (exponential linear unit)	
Batch Size	2	
Input	12-Months SPI	
Number Of Features	1	
Number Of Epochs	100	
Optimizer	Adam	
Loss Function	Mean Square Error	
Output	Next 2 Months Data Points	

SPI Time Series

LSTM Input = 1-Year, Prediction = Next 2 Month, **RMSE = 0.4950956**

Testing Data SPI_6 (2-Month Lead Time)

LSTM Input = 1-Year , Prediction = Next 2 Month, **RMSE = 0.566728**

Testing Data SPI_9 (2-Month Lead Time)

LSTM Input = 1-Year, Prediction = Next 2 Month, **RMSE = 0.325094**

LSTM Input = 1-Year , Prediction = Next 1 Month, RMSE = 0.2444

Results Comparison

SPI Prediction Model	RMSE Comparison		
	SPI_6	SPI_9	SPI_12
1-Month Lead Time	0.393155	0.3628945	0.2444
2-Month Lead Time	0.4950956	0.56672787	0.325094

Risk Assessment

Drought Classification for SPI Series		
SPI Value	Class	
> 0	Normal	
0 to -0.55	Mild Drought	
-0.5 to -0.84	Moderate Drought	
-0.84 to -1.28	Severe Drought	
-1.28 to -1.65	Extreme Drought	
< -1.65	Very Extreme Drought	

Alert Communication

Ongoing Work

- The forecasts from this information can be used to develop the Reservoir Optimization Model.
- The system is to be deployed in real time by interfacing with the sensors database.
- More sophisticated deep learning approaches are to be implemented to make the forecast:
 - More reliable
 - Robust
 - Generalizable

jahan@lums.edu.pk