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Namal Lake

• Namal dam was formed when Namal dam was constructed in 1913 
in the Namal valley of Mianwali district

• Area of lake is ~5.5 𝑘𝑚!

• Catchment area is more than ~400 𝑘𝑚!

• Area being irrigated by the lake is ~6000 acres
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Background
• Namal lake is vulnerable to flood in the monsoon seasons,

in other parts of the year it faces water scarcity.

• These challenges resulted in fatalities, damage to the

infrastructure and low agricultural yield over years.

• The two very recently flooding events occurred in 2015 and

2020 respectively. In 2022, the dam was facing severe

drought.
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Early Warning System

• Risk Knowledge
• Monitoring/ In-situ Sensors 
• Meteorological Dataset
• Deep Learning Techniques
• Hydrological Models

• Water Level Prediction
• Drought Prediction
• Calculating Risks
• Alert Communication
• In-time Safety Actions



Methodology
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Collecting Dataset 
From Different Sources

Pre-processing
The Dataset

Building The Deep 
Learning Models

Testing and Model 
Optimization

Using Results For 
Risk Assessment

Alert Communication 
Services
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Data Sources

• Data from sensors installed by Centre For Water Informatics And Technology, LUMS.

• 5 years of historical data from irrigation office.

• Catchment attributes and meteorological for large sample studies (CAMEL) data set.

• 37+ years of rainfall dataset from Center Of Hydrometeorological And Remote Sensing

data portal.
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• Smart phone penetration in the community

• Impact of “Machine Learning” in our daily life 
applications

The Opportunity



Proposed Solution

• Leverage neural networks / deep learning
• Train the machine learning models on the data 

collected from different sources
• Forecast the extreme climate conditions in the 

valley
• Flash flood forecast
• Drought forecast



Implementation

• Python 
• TensorFlow / CNN / RNN / LSTM
• Amazon SageMaker Studio
• Firebase Database
• Android Studio
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Chain Rule
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Chain Rule

Rate of Change of Error with respect to wij



Apply update rule!

Back-propagation Algorithm: Artificial Neural Networks



• Conventional neural network takes a bunch of input features 
and gets itself trained to estimate the output based on the 
training data

• Bottleneck: It takes the input features all at once and doesn’t 
discriminate the features based on the temporal history

• RNNs are used to resolve this bottleneck!
• Long Short-Term Memory (LSTM) is one of the popular RNNs

Recurrent Neural Networks (RNNs)
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LSTM

Repeat Vector Layer

Time Distributed Dense Layer

LSTMLSTM
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Mobile Application

In-Situ Sensors

Raw 
Data

Pre-Processing Block

Data Cleaning

Data 
Aggregation

Normalization

Data Pre-settings

Sequence 
Generation

Many to 
Many

Many to 
One.

D
eep Learning M

odel

Risk Assessment

Flood Risk 

NDMA Policy

Alert Communication

Monitoring and Data

Flood Prediction System
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Training Process
Number Of LSTM Layers 2
Hidden States In layers 10
Activation Tanh (tangent hyperbolic)
Batch Size 10
Input 144 hours data
Number Of Features 4
Number Of Epochs 20
Optimizer Adam

Loss Function Mean Square Error
Output Next 5 Hours data points

5-Hours (short term flood 
forecasting)

qLake Water Level
qRain
qTemperature
qHumidity

Water Level Prediction Model
Features
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Results

RMSE = 0.109

LSTM input = 144-hours (6-days) , Prediction = Next 5 hours
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Results Comparison



Flood Risk Classes
Lake Water Level (ft) Risk

Less than 1162 Normal 

1162.1 – 1165 Low

1165.1 – 1168 Medium

1168.1 – 1170 High

Above 1170 Extreme

Risk Assessment
AREA UNDER LAKE

Lake Water Level (ft) Area In Acres

1160 1338.39

1165 1942.6

1170 2830.60

1175 3721.33

Irrigation Department 26
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Ongoing Work

• The forecasts from this information can be used to develop 
the Reservoir Optimization Model.

• The system is to be deployed in real time by interfacing 
with the sensors database.

• More sophisticated deep learning approaches are to be 
implemented to make the forecast:
• More reliable
• Robust
• Generalizable
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Standardize Precipitation Index (SPI)

• Standardize Precipitation Index is a standard index used to 

characterize the drought over different timescales. 

• SPI over longer time scales are used to model the reservoir storage 

and ground water.
SPI_6

SPI_9

SPI_12

Raw 
Precipitation 

Data

Gamma 
Distribution

Normal  
Distribution
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37+ Years of 
Rainfall 
Record

SPI-6

SPI-9

SPI-12

SPI Time Series Data Pre-settings

Sequence 
Generation

Many to 
Many

Many to 
One.

D
eep Learning M

odel

Drought 
Hazard Severity

NDMA/WMO 
Policy

Risk Assessment

Mobile Application

Alert Communication
Drought Warning System

Data Portal
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Training Process
Number Of LSTM Layers 2
Hidden States In layers 12
Activation ELU (exponential linear unit)

Batch Size 2
Input 12-Months SPI
Number Of Features 1
Number Of Epochs 100
Optimizer Adam

Loss Function Mean Square Error
Output Next 2 Months Data Points

SPI Prediction Model

2-Months Lead Time

qSPI Time Series

Features
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LSTM Input = 1-Year , Prediction = Next 2 Month, RMSE = 0.4950956

Year and 

Month

Predicted 
SPI-6 
Index

Actual 
SPI-6 
Index

Feb 

2022
-0.6268 -2.83404

March 

2022
-1.9465 -2.92053

April 

2022
-1.75636 -2.94954

Results
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Results
LSTM Input = 1-Year , Prediction = Next 2 Month, RMSE = 0.566728

Year 

and 

Month

Predicted 
SPI-9 
Index

Actual 
SPI=9 
Index

Feb 

2022
-0.2610 -0.58974

March 

2022
-0.9345 -0.82241

April 

2022
-1.069 -3.11308
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Year and 

Month

Predicted 
SPI-12 
Index

Actual 
SPI-12 
Index

Feb 

2022
-0.543 -0.60149

March

2022
-0.5504 -0.96215

April 

2022
-0.9699 -1.21812

LSTM Input = 1-Year , Prediction = Next 2 Month, RMSE = 0.325094
Results
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Results

Year and 

Month

Predicted 
SPI-12 
Index

Actual SPI-
12 Index

Feb 

2022
-0.55352 -0.60149

March 

2022
-0.53781 -0.96215

April 

2022
-0.86795 -1.21812

LSTM Input = 1-Year , Prediction = Next 1 Month, RMSE = 0.2444
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SPI Prediction 
Model

RMSE Comparison 

SPI_6 SPI_9 SPI_12

1-Month Lead 
Time 0.393155 0.3628945 0.2444

2-Month Lead 
Time 0.4950956 0.56672787 0.325094

Results Comparison
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Risk Assessment

Drought Classification for  SPI Series

SPI  Value Class
> 0 Normal

0  to  -0.55 Mild Drought
-0.5 to -0.84 Moderate Drought

-0.84 to  -1.28 Severe Drought
-1.28  to  -1.65 Extreme Drought

< -1.65 Very Extreme Drought
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Flood and 
Drought 

Prediction System

Flood A
ler

t

Drought Alert

Alert Communication
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Ongoing Work

• The forecasts from this information can be used to develop 
the Reservoir Optimization Model.

• The system is to be deployed in real time by interfacing 
with the sensors database.

• More sophisticated deep learning approaches are to be 
implemented to make the forecast:
• More reliable
• Robust
• Generalizable
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