Integrated Assessment Modeling for Sustainable Transformations in the Indus

Dr Talha Manzoor Assistant Professor and Associate Director (Operations) Centre for Water Informatics and Technology (WIT), LUMS

Nexus Summit 2024 : Harmonizing Energy, Water and Agriculture Systems for a Low Emissions Future

March 8th, 2024

Funded by the European Union

The MESSAGE Energy Supply Model

- Developed in the 1970's at IIASA's Energy Systems Program group
- MESSAGE is a dynamic linear programming model that

minimizes the total discounted costs of supplying a given set of energy demands over a given

time horizon.

Acronym: Model for energy supply systems alternatives and their general environmental impact

International Institute for Applied Systems Analysis (IIASA) Sectoral Decision Making: Energy Supply systems

Multiple technologies for energy production exist

- Fossil fuels
- Nuclear Energy
- Solar Energy
- Hydro power
- Geo-thermal
- And so on. . .

The purpose of ESS models is to determine the optimal mix of technologies over the next 25-50 years

Resource consumption subsystem

Dynamics

 $z_i(t+1) = z_i(t) + w_i(t)$

Resource availability

 $\bar{z}_1(t)$ $\bar{z}_2(t)$

 $\overline{z}_m(t)$

Constraint

$$z_j(t) \le \bar{z}_j(t)$$

- the cumulative amount of resource *j* $z_i(t)$ extracted by the beginning of period t
- the total amount of resource *j* available $\bar{z}_i(t)$ for period t
- the total consumption of primary $w_i(t)$ resource i in period t

Energy end-use applications

Demand vector

Energy conversion processes

Energy conversion processes

Objective Function

Cost of resource extraction

Optimization Problem

Objective

$$J = \sum_{t=0}^{T-1} \beta(t) \left[\sum_{i=1}^{n} {}^{u}c_{i}u_{i}(t) + \sum_{i=1}^{n} {}^{v}c_{i}v_{i}(t) + \sum_{j=1}^{m} {}^{w}c_{j}w_{j}(t) \right] \to \min$$

State Equations

$$y_i(t+1) = y_i(t) + v_i(t) - v_i(t - \tau_i)$$

$$z_j(t+1) = z_j(t) + w_j(t)$$

Constraints

$$\sum_{i,l} \beta_{jil} x_{jil} = w_j(t) \qquad \sum_{j,l} \gamma_{jil} x_{jil} = u_i(t) \qquad \sum_{j,i} \alpha_{jil} x_{jil} \ge d_l(t)$$
$$z_j(t) \le \bar{z}_j(t) \qquad u_i(t) \le y_i(t) \qquad v_i(t) \le \bar{v}_i(t)$$

Decision variables

$${x_{jil}(t)}$$
 Technology activities
 ${v_i(t)}$ Technology investments

Typical Output

Analysis using MESSAGEix: Input and Output Data

Model input data and output results

- Technology-rich, bottom-up model
- Suitable for analyzing energy transitions and GHG scenarios over several decades

Project

- Integrated Solutions for Water, Energy and Land (ISWEL)
- IIASA, Global Environment Facility (GEF) and United Nations Development Organization (UNIDO)
- Sub-project on the Indus Basin
- Integrated solutions to water, energy, food and ecosystem security

The <u>NExus</u> Solutions <u>T</u>ool (NEST) Multi-scale modeling for transforming systems

Vinca, Adriano, Simon Parkinson, Edward Byers, Peter Burek, Zarrar Khan, Volker Krey, Fabio A. Diuana et al. "The NExus Solutions Tool (NEST) v1. 0: an open platform for optimizing multi-scale energy– water–land system transformations." *Geoscientific Model Development* 13, no. 3 (2020): 1095-1121.

Indus Analysis How to strike a balance between objectives? ... and at what cost?

Transboundary Agreements & National Water-Energy-Food Security

Scenarios

Name	Description	Туре	Constraints	
Baseline	No SDG targets; no environmental constraints; expansion of planned hydropower; follow historical trends and agriculture practices (SSP2, RCP 6.0 for all scenarios)	Reference scenario	Planned hydropower in 2030; Land use and irrigation choice (mostly flood)	
Multiple objective	SDG related targets: water access and treatment, energy water impacts and GHG emissions Regional targets identified within this analysis: smart irrigation, environmental flow, hydropower expansion	Reference scenario	Water treatment + piped distribution, no once through cooling GHG emissions, +100% environmental flow 50% smart irrigation, planned hydropower in 2030	
Extreme climate	90 th percentile of runoff distribution when aggregating yearly values from the hydrological model	Sensitivity case	90 th percentile on runoff distribution	
Basin cooperation	Electricity trade between basin countries cross boundary canals different river allocation than Indus Water Treaty Crop products demand at basin scale, instead of country	Sensitivity case	Release constraints on cross border transmission/canals Release IWT constraints Basin food demand	
Economy	SDG targets (water access and treatment); optimal land allocation and diversion from historical trends; expansion of planned hydropower no environmental constraints	Stakeholder pathway	Water treatment + piped distribution +50% environmental flow; Planned hydropower in 2030	
Environment	Achieve SDG 6 and 7; No hydropower expansion; Constraints on GHG emission, environmental flow and groundwater use. Deployment of smart irrigation technologies	Stakeholder pathway	Water treatment + piped distribution GHG emission constraint; +200% environmental flow; 50% smart irrigation	

Transboundary Cooperation in Indus River Basin

Transboundary cooperation a potential route to sustainable development in the Indus basin

Adriano Vinca^{1,2}^{\overlineq}, Simon Parkinson^{1,2}, Keywan Riahi^{1,2,3}, Edward Byers¹, Afreen Siddiqi^{4,5}, Abubakr Muhammad⁶, <mark>Ansir Ilyas⁶,</mark> Nithiyanandam Yogeswaran⁷, Barbara Willaarts¹, Piotr Magnuszewski¹, Muhammad Awais¹,², Andrew Rowe² and Ned Djilali^{2,8}

How the countries in the Indus river basin could lower the costs for development and reduce water stress by cooperating on water resources and electricity and food production?

Yearly costs under different scenarios

Indus Countries, Pakistan, India, Afghanistan, and China

Future Scenario For Indus River Basin

What are benefits and consequence of adopting smart irrigation and hydropower penetration in Indus River Basin?

Policy mechanism	Baseline	Hydro	Balance-0	Smart-50	Balance-50
Water conservation	No conservation targets for irrigation.	Minimum flow in Indus delta area of 46Mm³/d (July-October) and 12Mm³/d (October- March).	Minimum flow in Indus delta area of 46Mm³/d (July-October) and 12Mm³/d (October- March).	Minimum flow in Indus delta area of 46Mm³/d (July-October) and 12Mm³/d (October- March).	Minimum flow in Indus delta area of 46Mm³/d (July-October) and 12Mm³/d (October- March).
Smart irrigation	No smart irrigation tech- nology is available	No smart irrigation tech- nology is available	Smart irrigation is de- ployed if cost optimal .	By 2030, 50% of ir- rigated area in each model region is utilizing smart technology.	By 2030, 50% of ir- rigated area in each model region is utilizing smart technology.
Hydropower penetration	In future, Install all planned hydropower projects in the Basin.	In future, Install all planned hydropower projects in the Basin.	In future, Install all planned hydropower projects in the Basin.	In the future no new hy- dropower installed in the system.	In future, Install all planned hydropower projects in the Basin.
	Contents lists available Environmental Scie	at ScienceDirect	Environmental Science & Policy	Crop activities can uti- lize all available cropping areas and can be shifted within countries.	Crop activities can uti- lize all available cropping areas and can be shifted within countries .
SEVIER	journal homepage: www.else	evier.com/locate/envsci			

Balancing smart irrigation and hydropower investments for sustainable water conservation in the Indus basin

Ansir Ilyas^{a,*}, Simon Parkinson^{b,c}, Adriano Vinca^{b,c}, Edward Byers^b, Talha Manzoor^a, Keywan Riahi^{b, c, e}, Barbara Willaarts^b, Afreen Siddigi^d, Abubakr Muhammad^a

ELSE

Investment portfolio

Water sector changes

 Irrigated

Comparison of all scenarios

MESSAGEix-Pakistan

"National-level energy model developed using the MESSAGEix framework to generate sustainable pathways for a low emission future for Pakistan"

Current work

MESSAGEix-Nexus (Global)

Country Borde

Afghanistar
 China

India

Downscale/Prototype
(existing method)

MESSAGEix-Country

Updated country scale model with water representation as in global model

Top-down approach to downscale energy & water components from national model

MESSAGEix-Nexus (National/Basin)

NEST Indus

Improve existing model structure to be flexible to other regions in future

Bottom-up approach/subcatchment level

Spatial Units

Integrating Renewable Energy in Pakistan's Energy Sector: Policy Assessments and Low-Emissions Scenarios

Joudat Bint Khalil¹, Talha Manzoor¹, Muhammad Awais^{2,3} Abubakr Muhammad¹

¹Centre of Water Informatics and Technology, Lahore University of Management Sciences (WIT, LUMS) ²International Institute of Applied Systems Analysis ³University of Victoria

Mitigation Policy Objectives

Scenario Design

International Institute for Applied Systems Analysis

A Not-for-Profit University Centre for Water Informatics and Technology

www.iiasa.ac.at

- 1. Baseline BAU (Business as usual, 30% Renewable in 2020)
- 2. Policy Scenario ELECTR (Rapid Integration of Renewable resources in energy mix)

Demand sensitivity analysis to explore the impact of $\pm 10\%$ demand variations for both scenarios

MESSAGEix-Pakistan : Energy Demands

Insights

- Solution to lower energy sector emissions is integration of renewable resources, irrespective of the demands
- As demand increases, coupled with ambitious integration of renewables, operational and maintenance costs follow suit

Future Plan

- Spatial units Intersecting Administrative Boundaries with Agro Ecological Zones
- Improvement of hydrological scenarios
- Representation of National Policy and Investment Plan
- Integrating Agriculture and Land Use with Energy Sector
- Scenario Generation for Adaptation and Mitigation
- Micro-behaviors and human processes.