

## **Co-creation Activity**

# Scenario Development for Low Emissions Futures in Pakistan

| Muhammad Awais | IIASA |
|----------------|-------|
| Hassan Niazi   | PNNL  |
| Asif Khan      | ADB   |
| Talha Manzoor  | LUMS  |

NEXUS SUMMIT 2024, LUMS





### Standard IPCC-inspired SSP-RCP matrix



for adaptation

IASA



### Stakeholder pathways



|         | Policy                       | Question                                                                                                 | Description/                                                     | Stakeholder pathway                                                 |
|---------|------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|
| ENERGY  | Environmental flow           | What level of environmental<br>flow is a good compromise<br>between costs, benefits and<br>water demand? | Per capita electricity<br>demands remain at historical<br>levels | Economy: per capita<br>electricity demands<br>increase              |
|         | Electricity demand reduction | SGD 7.3 + 20% end-use<br>efficiency improvement relative<br>to 2015                                      | Per capita electricity<br>demands remain at historical<br>levels | Environment: improve demand side efficiency                         |
|         | Clean energy<br>access       | SDG 7.2 By 2030, 50%<br>substantially the share of<br>renewable energy in the global<br>energy mix       | No policies beyond current planned infrastructure                | Environment Society: set targets of renewable penetration           |
|         | Power plant cooling          | SDG 7.b By 2030, expand<br>infrastructure and upgrade<br>technology                                      | No policy                                                        | Environment: Increase the available storage level from 2030 onwards |
| CLIMATE | Climate change<br>impacts    | SDG 13.a Implement the<br>commitment undertaken at the<br>UN Framework Convention on<br>Climate Change   | No constraints on emissions                                      | Environment: targets on GHG emission reduction                      |

### Scenarios Co-creation – Targets



| Sectors | Indicators                                  | Low Emissions | Climate Resilience | Economic Development |
|---------|---------------------------------------------|---------------|--------------------|----------------------|
| Water   | 1(a) Sustainability/<br>Environmental Flows |               |                    |                      |
|         | 1(b) Irrigation technologies                |               |                    |                      |
|         | 1(c) Extreme Events                         |               |                    |                      |
| Energy  | 2(a) Access/ Loadshedding                   |               |                    |                      |
|         | 2(b) Demand side measures                   |               |                    |                      |
|         | 2(c) Supply side measures                   |               |                    |                      |
| Land    | 3(a) Land cover/ land use                   |               |                    |                      |
|         | 3(b) Yields/ technologies                   |               |                    |                      |
|         | 3(c) Unintended consequences                |               |                    |                      |

### Scenarios Co-creation – Feedbacks

|         | Scenarios →                                 | Low Emission |           | Climate Resilience |           | Economic Development |           |
|---------|---------------------------------------------|--------------|-----------|--------------------|-----------|----------------------|-----------|
| Sectors | Indicators                                  | Tradeoffs    | Synergies | Tradeoffs          | Synergies | Tradeoffs            | Synergies |
| Water   | 1(a) Sustainability/<br>Environmental Flows |              |           |                    |           |                      |           |
|         | 1(b) Irrigation technologies                |              |           |                    |           |                      |           |
|         | 1(c) Extreme Events                         |              |           |                    |           |                      |           |
| Energy  | 2(a) Access/ Loadshedding                   |              |           |                    |           |                      |           |
|         | 2(b) Demand side measures                   |              |           |                    |           |                      |           |
|         | 2(c) Supply side measures                   |              |           |                    |           |                      |           |
| Land    | 3(a) Land cover/ land use                   |              |           |                    |           |                      |           |
|         | 3(b) Yields/ technologies                   |              |           |                    |           |                      |           |
|         | 3(c) Unintended consequences                |              |           |                    |           |                      |           |

### Scenarios Co-creation – Targets



| Sectors | Indicators                                  | Low Emissions                              | Climate Resilience                    | Economic Development                         |
|---------|---------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------|
| Water   | 1(a) Sustainability/<br>Environmental Flows |                                            |                                       |                                              |
|         | 1(b) Irrigation technologies                |                                            |                                       |                                              |
|         | 1(c) Extreme Events                         |                                            |                                       |                                              |
| Energy  | 2(a) Access/ Loadshedding                   |                                            |                                       |                                              |
|         | 2(b) Demand side measures                   |                                            |                                       |                                              |
|         | 2(c) Supply side measures                   | Increase biomass production by 25% by 2050 | Increase hydropower by 15% by<br>2050 | Increase fossil production<br>by 15% by 2050 |
| Land    | 3(a) Land cover/ land use                   |                                            |                                       |                                              |
|         | 3(b) Yields/ technologies                   |                                            |                                       |                                              |
|         | 3(c) Unintended consequences                |                                            |                                       |                                              |

Note: Don't worry about the feasibility of the scenario! Not all scenarios solve

### Scenarios Co-creation – Feedbacks

| Ę |   |   |   |  |
|---|---|---|---|--|
|   | A | S | A |  |

|         | Scenarios →                                 | Low Em                        | ission                   | Climate Resilience |           | Economic Development |           |
|---------|---------------------------------------------|-------------------------------|--------------------------|--------------------|-----------|----------------------|-----------|
| Sectors | Indicators                                  | Tradeoffs                     | Synergies                | Tradeoffs          | Synergies | Tradeoffs            | Synergies |
| Water   | 1(a) Sustainability/<br>Environmental Flows |                               |                          |                    |           |                      |           |
|         | 1(b) Irrigation technologies                |                               |                          |                    |           |                      |           |
|         | 1(c) Extreme Events                         |                               |                          |                    |           |                      |           |
| Energy  | 2(a) Access/ Loadshedding                   |                               |                          |                    |           |                      |           |
|         | 2(b) Demand side measures                   |                               |                          |                    |           |                      |           |
|         | 2(c) Supply side measures                   | 1a – large water<br>footprint | 3b – more<br>sugar crops |                    |           |                      |           |
| Land    | 3(a) Land cover/ land use                   |                               |                          |                    |           |                      |           |
|         | 3(b) Yields/ technologies                   |                               |                          |                    |           |                      |           |
| 10      | 3(c) Unintended consequences                |                               |                          |                    |           |                      |           |



#### Thank you

### **Understanding Pathways**

- Energy,water, land systems are pathdependent, capital intensive, involving many technologies, agents, and interactions between them 
   Transition is not straightforward
- Alternative pathways may exist to reach the same target.
- Implications of decisions made today may last over several decades. Testing each pathway is not possible or it may be too costly.
- Planning tools can help us to estimate/understand the implications of each pathway for reaching certain development or policy goals.

Same starting point - different pathways represent different policy options Figure: Holger Rogner (IIASA)





Checking **Sign-Post** in 2030.

Checking Sign-Post in 2030. Where are we?

Checking **indicators** in 2030: **How well are we doing** ?



Checking Sign-Post in 2025. Where are we?

Checking indicators in 2025: How well are we doing?

#### Scenarios Co-creation – Feedbacks



| Sectors | Indicators                             | Tradeoffs | Synergies | Opportunities/Policy tools |
|---------|----------------------------------------|-----------|-----------|----------------------------|
| Water   | Sustainability/ Environmental<br>Flows |           |           |                            |
|         | Irrigation technologies                |           |           |                            |
|         | Extreme Events                         |           |           |                            |
| Energy  | Access/ Loadshedding                   |           |           |                            |
|         | Demand side measures                   |           |           |                            |
|         | Supply side measures                   |           |           |                            |
| Land    | Land cover/ land use                   |           |           |                            |
|         | Yields/ technologies                   |           |           |                            |
|         | Unintended consequences                |           |           |                            |

### Session Goals

#### **Session Objectives:**

- To foster <u>cross-sectoral discussions</u> and co-create actionable strategies towards <u>achieving diverse objectives</u> e.g., net-zero emissions.
- To align Pakistan's National Determined Contributions (NDCs) with global temperature targets.
- To integrate global climate scenarios into national modeling efforts, focusing on the water, agriculture, energy sectors, and climate impact.

#### Methodology:

- Collaborative scenario development aligned with temperature goals.
- Sector-focused group discussions for in-depth analysis.
- Cross-sectoral dialogues to identify synergies and interdependencies.
- Diverse stakeholder engagement for comprehensive perspectives.





#### Introduction and Climate Policy Overview (20 minutes):

- Policy frameworks Policies in Pakistan (10 minutes)
- Discussion on Policy Development and Challenges (10 minutes)

#### Scenario Co-creation (45 minutes):

- Breakout Group Discussions (30 minutes): Participants divide into groups, preferably each focusing on specific policy challenge e.g., water, agriculture, climate, energy, mitigation, adaptation
- COMMITTED Scenario Protocol Survey (15 minutes): Participants fill out the survey in breakout groups led by Lara (CMCC)

#### Synthesis (30 minutes):

- Synthesizing Discussions (20 minutes): Participants discuss summarize key insights from breakout groups and discuss priority areas.
- Reflection (15 minutes): A 15 min reflection session led by Dr Asif Khan.