

Off-grid electrification in Pakistan and beyond: status, trends, and opportunities

Hassan Abbas Khan, Ph.D.

Associate Professor of Electrical Engineering SBA School of Science and Engineering Lahore University of Management Sciences Lahore, Pakistan

The Problem?

 How do we electrify 770 million people¹ worldwide without access to electricity including around 50 million in Pakistan²?

IEA (2022), World Energy Outlook 2022, IEA, Paris <u>https://www.iea.org/reports/world-energy-outlook-2022</u>
 <u>https://trackingsdg7.esmap.org/country/pakistan</u>

Need for Off-grid Electrification

Access to electricity enhances:

- Health opportunities
- Employment opportunities
- Agriculture opportunities
- Education opportunities
- Socio-economic development

Figure : A primary school in Naran Valley, Pakistan, without access to electricity and basic education facilities [1].

[1] Nasir, M., Khan, H. A., Zaffar, N. A., Vasquez, J. C., & Guerrero, J. M. (2018). Scalable solar dc micrigrids: on the path to revolutionizing the electrification architecture of developing communities. *IEEE Electrification Magazine*, *6*(4), 63-72.

How to define "Access" to Energy?

• **Conventional definitions:** binary definitions of access (presence of an electric pole in a village or a wired connection coming into a house) fail to capture aspects such as the technology used for producing energy, the level of energy consumption, and the affordability or reliability of supply.

• The multi-tier framework (MTF) by ESMAP (2015)

• A Fuel and technology- independent approach that measures household electricity access in a tiered fashion.

	INDICATIVE CALCULATION OF CONSUMPTION FOR MITF TIERS 1-5							
1.1.1.1.1	Appliance/ Service	Power (W)	Hours/day	Baseline Annual Usage (kWh)				
				Tier 1	Tier 2	Tier 3	Tier 4	Tier 5
	Task lighting	1/2	4-8	1.5	2.9	2.9	5.8	5.8
	Mobile Phone charger	2	2-4	1.5	2.9	2.9	2.9	2.9
	Radio device	2 or 4	2-4	1.5	5.8	5.8	5.8	5.8
	General lighting	12	4-12		17.5	17.5	35.0	52.5
	Fan	20 or 40	4,6,12,18		29.2	87.6	175.2	262.8
	TV	20 or 40	2		14.6	29.2	29.2	29.2
	Food processor	200	1/2			36.5	36.5	36.5
	Washing machine	500	1			182.5	182.5	182.5
	Refrigerator	300	6				657.0	657.0
	Iron	1,100	1/3				120.5	120.5
	Air conditioner	1,500	3					1,642.5
	Total (kWh)			4.5	73	365	1,250	3,000

A Not-for-Profit University

Potential Solutions?

- 1. Utility Grid
- 2. Diesel Generators
- 3. Centralized Microgrids
- 4. Solar Home Solutions (typically DC Standalone systems)
- 5. Bottom-up Microgrids with decentralized generation and storage (prosumer concept)

- Solar Home System: A solution for remote communities that are left out of national electrification projects.
- High energy wastage in SHS: up to 50% of the generated energy is wasted.

[1] Narayan, Nishant (2018): Electrical power consumption load profiles for households with DC appliances related to Multi-tier framework for household electricity access. Version 1. 4TU.ResearchData. dataset. <u>https://doi.org/10.4121/uuid:c8efa325-87fe-4125-961e-9f2684cd2086</u>

Common Electrification Strategies for Off-grid

- Solar Home System: A solution for remote communities that are left out of national electrification projects.
- High energy wastage in SHS: up to 50% of the generated energy is wasted.
- Power sharing in decentralized microgrids (low losses, more scalability, possibility to expand later).
- Microgrids have a potential for excess energy provision through power sharing.
- **High potential of tier elevation from** 1-4. Tier 5 cannot typically be viably powered using SHS-based electrification [1].
- Through sharing, each house becomes a prosumer (producer + consumer).

[1] Narayan, Nishant (2018): Electrical power consumption load profiles for households with DC appliances related to Multi-tier framework for household electricity access. Version 1. 4TU.ResearchData. dataset. <u>https://doi.org/10.4121/uuid:c8efa325-87fe-4125-961e-9f2684cd2086</u>

HA0 **Decentralized Prosumer Microgrids: Improving** Access to Energy¹

Case 1: Tier 1 Household moving to Tier 2 Solar PV Panel Rating: 120Wp Battery Size: 30Ah

1. R. Arshad, H. A. Khan, and R. Khalid, "Prosumer Power Sharing and Climate Change Adaptation in a Gendered Context," in IEEE GreenTech, Sustainability, and Net Zero Policies & Practices (GTSNZ), 2023.

Decentralized Prosumer Microgrids: Improving Access to Energy¹ Case 2: Tier 2 Household moving to Tier 3 Solar PV Panel Rating: 460Wp

Battery Size: 100Ah

A Not-for-Profit University

1. R. Arshad, H. A. Khan, and R. Khalid, "Prosumer Power Sharing and Climate Change Adaptation in a Gendered Context," in IEEE GreenTech, Sustainability, and Net Zero Policies & Practices (GTSNZ), 2023.

New innovations: Prosumer System

- Decentralized power generation from renewable resources
- Houses have multiple fans, lights and mobile phone charging.
- Houses inter-connected via a DC microgrid network to trade surplus power.
- The surplus electricity is used by the houses and to power up communal loads e.g., water pumps, schools, places
 of worship.

Cloud Storage

LOCEL-H,

EMS

E. Key Advantages of Prosumer Power Sharing

- Access to surplus power without additional investment.
- Lower cost of energy due to optimized utilization by power sharing attracts new consumers and improves social bonds in the community.
- Scalability due opportunities for future expansion & large-scale deployments.
- Flexible tariff and possibly reduced payments due to power sharing.
- Longer sustainability due to flexibility of ownership makes the investment sustainable.
- **Monitoring** can significantly improve system performance, & early fault detection and optimized resolution.

Key Advantages of Prosumer Power Sharing

Improved Access To Energy also leads to Climate Change Adaptation!

F. Case Study: Off-Grid Village in Pakistan

Cluster-Arrangement in Village

HA0

- Every house in the pilot village is connected with a 350W solar PV panel on rooftop, which generates 12V DC power for household electricity consumption.
- All the houses in the village are inter-connected via a 48V microgrid network to share/trade surplus power.

Thank you Hassan.khan@lums.edu.pk

CONSORTIUM FOR BATTERY INNOVATION

Co-funded by the European Union

